High frequency cDNA recombination of the saccharomyces retrotransposon Ty5: The LTR mediates formation of tandem elements.

نویسندگان

  • N Ke
  • D F Voytas
چکیده

Retroelement cDNA can integrate into the genome using the element-encoded integrase or it can recombine with preexisting elements using the recombination system of the host. Recombination is a particularly important pathway for the yeast retrotransposon Ty5 and accounts for approximately 30% of the putative transposition events when a homologous substrate is carried on a plasmid and approximately 7% when the substrate is located at the chromosomal URA3 locus. Characterization of recombinants revealed that they are either simple replacements of the marker gene tandem elements. Using an assay system in which the donor element and recombination substrates are separated, we found that the long terminal repeats (LTRs) are critical for tandem element formation. LTR-containing substrates generate tandem elements at frequencies more than 10-fold higher than similarly sized internal Ty5 sequences. Internal sequences, however, facilitate tandem element formation when associated with an LTR, and there is a linear relationship between frequencies of tandem element formation and the length of LTR-containing substrates. We propose that recombination is initiated between the LTRs of the cDNA and substrate and that internal sequences promote tandem element formation by facilitating sequence alignment. Because of its location in subtelomeric regions, recombinational amplification of Ty5 may contribute to the organizations of chromosome ends.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studying the replication mechanism of the yeast retrotransposon Ty5 by molecular and computational approaches

vi CHAPTER I. GENERAL INTRODUCTION 1 Taxonomy of transposable elements 1 Retroviruses and LTR retrotransposons 2 Overview of reverse transcription 7 Retroelement proteins involved in reverse transcription 10 Diversity in priming LTR retroelements reverse transcription 12 Integration and recombination of cDNA 15 Evolution of retroelements 19 The Ty5 system 19 Dissertation organization 23 Referen...

متن کامل

The Saccharomyces retrotransposon Ty5 influences the organization of chromosome ends.

Retrotransposons are ubiquitous components of eukaryotic genomes suggesting that they have played a significant role in genome organization. In Saccharomyces cerevisiae, eight of 10 endogenous insertions of the Ty5 retrotransposon family are located within 15 kb of chromosome ends, and two are located near the subtelomeric HMR locus. This genomic organization is the consequence of targeted tran...

متن کامل

Ty1 copy number dynamics in Saccharomyces.

To understand long terminal repeat (LTR)-retrotransposon copy number dynamics, Ty1 elements were reintroduced into a "Ty-less" Saccharomyces strain where elements had been lost by LTR-LTR recombination. Repopulated strains exhibited alterations in chromosome size that were associated with Ty1 insertions, but did not become genetically isolated. The rates of element gain and loss under genetic a...

متن کامل

The pheromone response pathway activates transcription of Ty5 retrotransposons located within silent chromatin of Saccharomyces cerevisiae.

The Saccharomyces retrotransposon Ty5 integrates preferentially into transcriptionally inactive regions (silent chromatin) at the HM loci and telomeres. We found that silent chromatin represses basal Ty5 transcription, indicating that these elements are encompassed by silent chromatin in their native genomic context. Because transcription is a requirement for transposition, integration into sil...

متن کامل

Increased length of long terminal repeats inhibits Ty1 transposition and leads to the formation of tandem multimers.

The Ty1 retrotransposon of Saccharomyces cerevisiae is bounded by long-terminal repeats (LTRs). We have constructed a variety of Ty1 elements in which the LTR length has been increased from the normal length of 334 bp to > 2 kb. Although small insertions in the LTR have minimal effects on transposition frequency, larger insertions dramatically reduce it. Nevertheless, elements with long LTRs ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 147 2  شماره 

صفحات  -

تاریخ انتشار 1997